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Abstract

Land use change models are tools to support the analysis of the causes and consequences of land use dynamics.
Scenario analysis with land use models can support land use planning and policy. Numerous land use models are
available, developed from different disciplinary backgrounds. This paper reviews current models to identify priority
issues for future land use change modelling research. This discussion is based on six concepts important to land use
modelling: (1) Level of analysis; (2) Cross-scale dynamics; (3) Driving forces; (4) Spatial interaction and neigh-
bourhood effects; (5) Temporal dynamics; and (6) Level of integration. For each of these concepts an overview is
given of the variety of methods used to implement these concepts in operational models. It is concluded that a lot of
progress has been made in building land use change models. However, in order to incorporate more aspects
important to land use modelling it is needed to develop a new generation of land use models that better address the
multi-scale characteristics of the land use system, implement new techniques to quantify neighbourhood effects,
explicitly deal with temporal dynamics and achieve a higher level of integration between disciplinary approaches
and between models studying urban and rural land use changes. If these requirements are fulfilled models will better
support the analysis of land use dynamics and land use policy formulation.

Introduction

Models of land use change are tools to support the
analysis of the causes and consequences of land use
changes in order to better understand the functioning
of the land use system and to support land use plan-
ning and policy. Models are useful for disentangling
the complex suite of socio-economic and biophysical
forces that influence the rate and spatial pattern of
land use change and for estimating the impacts of
changes in land use. Furthermore, models can support
the exploration of future land use changes under dif-
ferent scenario conditions. Summarising, land use
models are useful and reproducible tools, supplement-
ing our existing mental capabilities to analyse land use
change and to make more informed decisions (Cos-
tanza and Ruth, 1998).

The objective of this paper is to review the currently
available approaches to model land use change in order
to identify the priorities for future land use change re-
search. We limit the discussion to descriptive models
that aim at simulating the functioning of the land use
system and the spatially explicit simulation of near fu-
ture land use patterns. Another group of land use
models are prescriptive models aiming at the calculation
of optimised land use configurations that best match a
set of goals and objectives. In this paper we will not
further discuss prescriptive models but refer the reader
to reviews by Van Ittersum et al. (1998) and Briassoulis
(2000).

The group of descriptive land use change models
represents a wide variety of modelling traditions and
theoretical backgrounds. Reviews that characterise and
classify land use models are provided by Lambin
(1997) and Kaimowitz and Angelsen (1998) for defor-
estation, Miller et al. (1999) for integrated urban
models, Lambin et al. (2000a) for agricultural intensi-
fication models, and by Bockstael and Irwin (2000) for
land use models based on economic theory. Agarwal
et al. (2001) reviews a selection of 19 models based on
their spatial, temporal and human-choice complexity.
Briassoulis (2000) gives a more extended review of all
types of land use models. In this paper we will not
repeat such a characterisation and classification of
models but focus our discussion on a number of fea-
tures of land use systems that need to be taken into
account by land use modellers. Based on the discussion
of these features we will show, for a wide range of
models, how these features are presently implemented
in land use models, discuss the (dis)advantages of these
methods, and identify the research requirements for
improving land use models.

Land use change modelling concepts and implementation

This section is based on a discussion of six features that
are considered to be of importance to modelling land
use change: (1) Level of analysis; (2) Cross-scale
dynamics; (3) Driving factors; (4) Spatial interaction
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and neighbourhood effects; (5) Temporal dynamics; and
(6) Level of integration. These features have been men-
tioned frequently in a series of recent papers, reports
and workshops by members of the Land Use and Land
Cover Change (LUCC) research community (Turner II
et al., 1995; Moran, 2000; Lambin et al., 2000b; Geist
et al., 2001; McConnell and Moran, 2001; van der Veen
and Rotmans, 2001; Veldkamp and Lambin, 2001). For
each of the features a description of the underlying
theory and rationale is given followed by an overview of
the practical implementation in models. No complete
descriptions of the individual models are given, instead,
only the implementation of the specific features is de-
scribed. This discussion therefore solely reviews the
methods and applications available for addressing these
specific features without providing a full description of
the model or model category. The reader is referred to
publications that describe the individual models for
more details on the functioning of the model as a whole,
its technical specification and the specific applications. A
few, well known models that are frequently referred to
in this paper, are listed in Table 1. These models are
representative for different modelling approaches and
the reader might wish to consults some of the references
to model documentation.

Level of analysis

Theory and rationale
Scientific discipline and tradition have caused two dis-
tinctly different approaches to emerge in the field of land
use studies. Researchers in the social sciences have a
long tradition of studying individual behaviour at the
micro-level, some of them using qualitative approaches
(Bilsborrow and Okoth Ogondo, 1992; Bingsheng, 1996)
and others using the quantitative models of micro-eco-
nomics and social psychology. Rooted in the natural
sciences rather than the social, geographers and ecolo-
gists have focussed on land cover and land use at the
macro-scale, spatially explicated through remote sensing
and GIS, and using macro-properties of social organi-
sation in order to identify social factors connected to the
macro-scale patterns. Due to the poor connections be-
tween spatially explicit land use studies and the social
sciences, the land use modellers have a hard time to tap
into the rich stock of social science theory and meth-
odology. This is compounded by the ongoing difficulties
within the social sciences to interconnect the micro and
macro levels of social organisation (Watson, 1978;
Coleman, 1990).

Implementation in models
Micro-level perspective. Models based on the micro-le-
vel perspective are all based on the simulation of the
behaviour of individuals and the upscaling of this
behaviour, in order to relate it to changes in the land use
pattern. Two of the most important approaches will be
discussed here: multi-agent simulation and micro-eco-
nomic models.

Multi-agent models simulate decision-making by
individual agents of land use change explicitly address-
ing interactions among individuals. The explicit atten-
tion for interactions between agents makes it possible
for this type of models to simulate emergent properties
of systems. Emergent properties are properties at the
macro-scale that are not predictable from observing the
micro-units in isolation. Such properties ‘emerge’ if
there are important interactions between the micro-units
that feedback on the micro-behaviour. If the decision
rules of the agents are set such that they sufficiently look
like human decision-making they can simulate behav-
iour at the meso-level of social organisation, i.e. the
behaviour of in-homogeneous groups of actors.

Multi-agent models are part of distributed artificial
intelligence methods. An agent is ‘‘a real or abstract
entity that is able to act on itself and on its environ-
ment; which can, in a multi-agent universe, communi-
cate with other agents; and whose behaviour is the
result of its observations, its knowledge and its inter-
actions with other agents’’ (Sanders et al., 1997).
Multi-agent models can shed light into the degree in
which system-level properties simply emerge from local
evolutionary forces, and the degree to which those lo-
cal processes are influenced and shaped by their effect
on the persistence and continued functioning of eco-
systems or the biosphere (Levin, 1998). Until a couple
of years ago mathematical and computational capacity
limited the operation of this type of models. Nowa-
days, different research teams have developed systems
to simulations, most often for totally different purposes
than land use change modelling (DIAS, 1995; Cubert
et al., 1997; Lutz, 1997). The best known system that
can be adapted for ecological and land use simulation
is the SWARM environment that was developed at the
Santa Fe Institute (Hiebler et al., 1994). Such models
should be based on detailed information of socio-eco-
nomic behaviour under different circumstances (Conte
et al., 1997; Tesfatsion, 2001). This information can be
obtained from extensive field studies of sociologists; the
relative importance of the different processes influenc-
ing land use change can be tested by sensitivity analysis
and a link to higher levels of aggregation can be made.
The simulated behaviour at aggregate levels can help
the development of new theories linking individual
behaviour to collective behaviour. Such meso-level
studies typically show how individual people interact to
form groups and organise collective action, and how
such collective decisions vary with group size, collective
social capital, and so on.

Most current multi-agent models are only able to
simulate very simplified, hypothetical landscapes, as the
number of interacting agents and variety of factors that
need to be taken into account, is still too large to make
comprehensive models (Kanaroglou and Scott, 2001).
An example of a multi-agent model for an hypothetical
landscape is the SIMPOP model which simulated the
evolution of settlement and urban transition (Bura
et al., 1996; Sanders et al., 1997). Efforts are currently
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underway to build operational multi-agent models for
realistic land use change simulations (Bousquet et al.,
1998; Vanclay, 1998; Manson, 2000; Barreteau and
Bousquet, 2000; Berger, 2001; Polhill et al., 2001;
Rouchier et al., 2001). The validity of these models will
depend on the strength of the model of human decision-
making and interaction. The challenge in this area is to
obtain sufficient data at the individual/household level
to develop a well-parameterised and validated model of
decision-making. Observed land-use or land-cover
change outcomes are not sufficient to validate such a
model.

A wide variety of land use models exist that
are based on micro-economic theory, reviewed by
Kaimowitz and Angelsen (1998) and Irwin and Geog-
hegan (2001). Most economic land use change models
begin from the viewpoint of individual landowners who
make land use decisions with the objective to maximise
expected returns or utility derived from the land, and
use economic theory to guide model development,
including choice of functional form and explanatory
variables (Ruben et al., 1998). The assumptions of
behaviour are valid for the micro level. This limits
these models to applications that are able to discern all
individuals. Difficulties arise from scaling these models,
as they have primary been designed to work at the
micro-level. Jansen and Stoorvogel (1998) and Hijmans
and Van Ittersum (1996) have shown the problems of
scale that arise when this type of models are used at
higher aggregation levels.

Macro-level perspective. Studies that use the macro-level
perspective are often based on macro-economic theory
or apply the systems approach. A typical example of an
economic model that uses the macro-perspective is the
LUC model of IIASA developed for China (Fischer and
Sun, 2001). The model is designed to establish an inte-
grated assessment of the spatial and intertemporal
interactions among various socio-economic and bio-
physical forces that drive land use and land cover
change. The model is based on recent advances in ap-
plied general equilibrium modelling. Applied general
equilibrium modelling uses input–output accounting
tables as the initial representation of the economy and
applies a dynamic welfare optimisation model. In
mathematical terms, the welfare optimum levels of re-
source uses and transformations are a function of the
initial state of the economy and resources, of the pa-
rameterisation of consumer preferences and production
relations, and of (exogenously) specified dynamics and
constraints such as population growth and climate
changes. The model has a low spatial resolution (8 re-
gions in China) and is very data-demanding due to the
multiple sectors of the economy that are taken into
account.

Other land use change models are based on an
analysis of the spatial structure of land use; therefore,
they are not bound to the behaviour of individuals or
sectors of the economy. Among these models are the

CLUE model (Veldkamp and Fresco, 1996; Verburg
et al., 1999a); GEOMOD2 (Pontius et al., 2001); LOV
(White and Engelen, 2000) and LTM (Pijanowski et al.,
2000). The functioning of some of these models will be
clarified in the next sections.

Cross-scale dynamics

Theory and rationale
The discussion on the micro- and macro-level research
perspective already referred to the issue of scale. Scale is
the spatial, temporal, quantitative, or analytic dimen-
sion used by scientists to measure and study objects and
processes (Gibson et al., 2000). All scales have extent
and resolution. Extent refers to the magnitude of a
dimension used in measuring (e.g. area covered on a
map) whereas resolution refers to the precision used in
this measurement (e.g. grain size). For each process
important to land use and land cover change, a range of
scales may be defined over which it has a significant
influence on the land use pattern (Meentemeyer, 1989;
Dovers, 1995). These processes can be related to exog-
enous variables, the so-called ‘driving forces’ of land use
change. Often, the range of spatial scales over which the
driving forces and associated land use change processes
act correspond with levels of organisation. Level refers
to level of organisation in a hierarchically organised
system and is characterised by its rank ordering in the
hierarchical system. Examples of organisational levels
include organism or individual, ecosystem, landscape
and national or global political institutions. Many
interactions and feedbacks between these processes oc-
cur at different levels of organisation. Hierarchy theory
suggests that processes at a certain scale are constrained
by the environmental conditions at levels immediately
above and below the referent level, thus producing a
constraint ‘envelope’ in which the process or phenome-
non must remain (O’Neill et al., 1989).

Most land use models are based on one scale or level
exclusively. Often, this choice is based on arbitrary,
subjective reasons or scientific tradition (i.e. micro- or
macro-level perspective) and not reported explicitly
(Watson, 1978; Gibson et al., 2000). Models that rely on
geographic data often use a regular grid to represent all
data and processes. The resolution of analysis is deter-
mined by the measurement technique or data quality
instead of the processes specified. Other approaches
chose a specific level of analysis, e.g. the household level,
which can be the level of the processes studied in the
particular case-study. For specific data sets optimal
levels of analysis might exist where predictability is
highest (Veldkamp and Fresco, 1997; Goodwin and
Fahrig, 1998), unfortunately these levels are not con-
sistent through analysis. Therefore, it might be better
not to use a priori levels of observation, but rather ex-
tract the observation levels from a careful analysis of the
data (Gardner, 1998; O’Neill and King, 1998).

The task of modelling sociocultural forces is difficult
because humans act both as individual decision makers
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(as assumed in most econometric models) and as mem-
bers of a social system. Sometimes these roles have
conflicting goals. Similar scale dependencies are found
in biophysical processes: the aggregated result of indi-
vidual processes cannot always be straightforwardly
determined. Rastetter et al. (1992) and King et al.
(1989) point out that the simple spatial averaging of
fine-scale non-linear functional forms of ecosystem
relationships, or of the data required to compute the
spatially aggregate versions of such functional forms,
can lead to substantial aggregation errors. This is widely
known as the ‘fallacy of averages’. Besides these fun-
damental issues of spatial scale another scaling issue is
related to scales of observation, and is, therefore, more
related to practice. Due to our limited capacities for the
observation of land use, extent and resolution are
mostly linked. Studies at large spatial extent invariably
have a relatively coarse resolution, due to our methods
for observation, data analysis capacity and costs. This
implies that features that can be observed in case studies
with a small extent are generally not observable in
studies for larger regions. On the other hand, due to
their small extent, local studies often lack information
about the context of the case study area that can be
derived from the coarser scale data. Scales of observa-
tion usually do not correspond with the scale/level at
which the process studied operates, causing improper
determination of the processes (Blöschl and Sivapalan,
1995; Schulze, 2000).

The discussion of scale issues can be summarised by
the three aspects of scaling important for the analysis of
land use change:
• Land use is the result of multiple processes that act
over different scales. At each scale different processes
have a dominant influence on land use.

• Aggregation of detailed scale processes does not
straightforwardly lead to a proper representation of
the higher-level process. Non-linearity, emergence and
collective behavior cause this scale-dependency.

• Our observations are bound by the extent and reso-
lution of measurement causing each observation to
provide only a partial description of the whole multi-
scale land use system.

Implementation in models
Although the importance of explicitly dealing with
scaling issues in land use models is generally recognised,
most existing models only take a single scale of analysis
into account. Especially economic models tend to
aggregate individual action but neglect the emergent
properties of collective values and actions (Riebsame
and Parton, 1994). Approaches that do implement
multiple scales can be distinguished by the implemen-
tation of a multi-scale procedure in either the structure
of the model or in the quantification of the driving
variables. The latter approach acknowledges that dif-
ferent driving forces are important at different scales
and it takes explicit account of the scale dependency of
the quantitative relation between land use and its

driving forces. Two different approaches of quantifying
the multi-scale relations between land use and driving
forces are known. The first is based on data that are
artificially gridded at multiple resolutions; at each indi-
vidual resolution the relations between land use and
driving forces are statistically determined (Veldkamp
and Fresco, 1997; de Koning et al., 1998; Walsh et al.,
1999, 2001; Verburg and Chen, 2000). The second ap-
proach uses multi-level statistics (Goldstein, 1995). The
first applications of multi-level statistics were used in the
analysis of social science data of educational perfor-
mances in schools. Aitkin et al. (1981) analysed the
individual performance of children, exposed to different
styles of teaching, in the context of the class they be-
longed to and demonstrated that when the analysis ac-
counted properly for the grouping of children into
classes, the significant differences between children dis-
appeared and the children that were exposed to different
teaching style could not be shown to differ from the
others. More recently it was found that this technique
for the analysis of hierarchically structured data could
also be useful for the analysis of land use, taking dif-
ferent driving forces at different levels of analysis into
account. Hoshino (2001) analysed the land use structure
in Japan by taking different factors at each level into
account using data for municipalities (level-1 units)
nested within prefectures (level-2 units). A similar ap-
proach was followed by Polsky and Easterling (2001) for
the analysis of the land use structure in the Great Plains
of the USA. Also in this study administrative units at
different hierarchical levels were used.

A number of land use change models are structured
hierarchically, thus taking multiple levels into account.
In its simplest form the total amount of change is
determined for the study area as a whole and allocated
to individual grid-cells by adapting the cut-off value of a
probability surface (Pijanowski et al., 2000). The de-
mand-driven nature of land use change could be used as
a rationale for this approach. Population and economic
developments change the demand for different land use
types at aggregate levels whereas the actual allocation of
change is determined by regional and local conditions.
This structure is also implemented in the CLUE mod-
elling framework (Veldkamp and Fresco, 1996). How-
ever, this framework uses three scales: the national scale
for demand calculations and two spatially explicit scales
to take driving forces at different scales into account
(Figure 1). Apart from the top–down allocation a bot-
tom-up algorithm is implemented to feed back local
changes to the regional level.

Pure cellular automata models determine the number
of cells that change in each step of the simulation
endogenously based on cellular dynamics. This bottom-
up approach might not be very suitable for land use
systems where the area of land use change is at least
partly determined by the demand for the activity that is
carried out on the cells. Within the models developed by
White and Engelen (2000), White et al. (1997) and
Engelen et al. (1995) use is made of constrained cellular
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automata. In such a constrained cellular automata
model a higher level constraint is used to regulate the
quantity of change at the cell-level. In the application
for the Netherlands (White and Engelen, 2000) national
level projections for population and sectoral economic
activity are translated to 40 urban-centred economic
regions (COROPs) where they are converted via pro-
ductivity functions into regional demands for cell space
for the land uses corresponding to each activity. These
demands constitute the constraints for the grid-based
allocation with cellular automata, which then deter-
mines the actual land use patterns. A feedback to the
regional level is incorporated through the influence of
land use densities and suitabilities at cell level on the
regional demand in the next iteration.

Driving forces

Theory and rationale
A unifying hypothesis that links the ecological and social
realms, and an important reason for pursuing integrated
modelling, is that humans respond to cues both from the
physical environment and from their sociocultural con-
text and behave to increase both their economic and
sociocultural well-being. Land use change is therefore
often modelled as a function of a selection of socio-
economic and biophysical variables that act as the so-
called ‘driving forces’ of land use change (Turner II
et al., 1993). Driving forces are generally subdivided in
three groups (Turner II et al., 1995): socio-economic
drivers, biophysical drivers and proximate causes (land
management variables). Although biophysical factors
mostly do not ‘drive’ land use change directly, they can
cause land cover changes (e.g. through climate change)
and they influence land use allocation decisions (e.g. soil
quality). At different scales of analysis different driving
forces have a dominant influence on the land use system:
at the local level this can be the local policy or the
presence of small ecological valuable areas whereas at the
regional level the distance to the market, port or airport
might be the main determinant of the land use pattern.

Driving forces are most often considered exogenous
to the land use system to facilitate modelling. However,
in some cases this assumption hampers the proper
description of the land use system, e.g. if the location of
roads and land use decisions are jointly determined.
Population pressure is often considered to be an
important driver of deforestation (Pahari and Marai,
1999), however, Pfaff (1999) points out that population
may be endogenous to forest conversion, due to unob-
served government policies that encourage development
of targeted areas, or that population may be collinear
with government policies. If the former is the case, then
including population as an exogenous ‘driver’ of land
use change would produce a biased estimate and lead to
misleading policy conclusions. If the latter were the case,
then the estimates would be unbiased, but inefficient,
leading to a potential false interpretation of the signifi-
cance of variables in explaining deforestation. Other
examples of endogeneity of driving forces in land use
studies are given by Chomitz and Gray (1996), Mertens
and Lambin (2000) and Irwin and Geoghegan (2001).

The temporal scale of analysis is important in
deciding which driving forces should be endogenous to
the model. In economic models of land use change de-
mand and supply functions are the driving forces of land
use change. Whereas prices at the short term can be
considered exogenous to land use change they are
endogenous on longer time spans.

Implementation in models
All models address in some way or other the issue of
driving forces of land use change. For model imple-
mentation two aspects of the use of driving forces are of
importance: their selection and the quantification of the
relations between driving forces and land use change.

Selection of driving forces. The selection of the driving
forces is very much dependent on the simplification
made and the theoretical and behavioural assumptions
used in modelling the land use system. In most economic
approaches optimisation of utility is the assumed
behaviour, leading to bid-rent models. Most economic
models of land use change are, therefore, related to the
land rent theories of Von Thünen and Ricardo. Any
parcel of land, given its attributes and location, is as-
sumed to be allocated to the use that earns the highest
rent (e.g. Jones and O’Neill (1992) and Chomitz and
Gray (1996)). In its most simple form, the monocentric
model, the location of a central city or business district
to which households commute, is the main factor
determining the rent of a parcel. All other features of the
landscape are ignored. Individual households optimise
their location by trading off accessibility to the urban
centre and land rents, which are bid up higher for
locations closer to the centre. The resulting equilibrium
pattern of land use is described by concentric rings of
residential development around the urban centre and
decreasing residential density as distance from the urban
centre increases. In this case ‘distance to urban centre’ is

Figure 1. Top–down allocation procedure.
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the most important driving variable. The limitation of
the monocentric model is partly due to its treatment of
space, which is assumed to be a ‘featureless plain’ and is
reduced to a simple measure of distance from the urban
centre. Others explains spatial variability in land rent by
differences in land quality that arise from a heteroge-
neous landscape, but abstract from any notion of rela-
tive location leading to spatial structure. Many models
that try to explain land values (for example, hedonic
models) combine the two approaches by including
variables that measure the distance to urban center(s) as
well as specific locational features of the land parcel
(Bockstael, 1996).

Models of urban and peri-urban land allocation are,
generally, much more developed than their rural coun-
terpart (Riebsame and parton, 1994). More recent urban
models are no longer solely based upon economic
modelling using either equilibrium theory or spatial di-
saggregated intersectoral input–output approaches.
Rather than utility functions they use discrete choice
modelling through logit models (Landis, 1995; Alberti
and Waddell, 2000). This also allows a greater flexibility
in behavioural assumptions of the actors. Conventional
economic theory makes use of rational actors, the Homo
economicus, to study human behaviour. This powerful
concept of the rational actor is not always valid and
various modifications to this conception of human
choice are suggested (Rabin, 1998; Janssen and Jager,
2000). Examples of such modifications of the concept of
the rational actor include the difficulty that people can
have evaluating their own preferences, self-control
problems and other phenomena that arise because
people have a short-run propensity to pursue immediate
gratification and the departure from pure self-interest
to pursue ‘‘other-regarding’’ goals such as fairness,
reciprocal altruism and revenge.

Models that integrate the analysis of different land
use conversions within the same model commonly use a
larger set of driving forces. Apart from the drivers that
determine urban land allocation, such as land value and
transportation conditions, they need information on the
suitability of the land for agricultural production (e.g.
soil quality and climatic variables), market access a.s.o.
Also the extent of the study area influences the selection
of variables. In larger areas it is common that a larger
diversity of land use situations is found, which requires a
larger variety of driving forces to be taken into account,
whereas in a small area it might be only a few variables
that have an important influence on land use.

Quantification of relations between land use and driving
forces. Three different approaches to quantify the
relations between land use change and its driving forces
can be distinguished. The first approach tries to base
all these relations directly on the processes involved,
using theories and physical laws. Examples are eco-
nomic models based on economic input-output analysis
(Waddell, 2000; Fischer and Sun, 2001) or utility
optimisation (Ruben et al., 1998). For integrated land

use change analysis this approach is often not very
successful due to the difficulty of quantifying socio-
economical factors without the use of empirical data.
Therefore, the second approach uses empirical methods
to quantify the relations between land use and driving
forces instead. Many econometric models rely therefore
on statistical techniques, mainly regression, to quantify
the defined models based on historic data of land use
change (Bockstael, 1996; Chomitz and Gray, 1996;
Geoghegan et al., 1997; Pfaff, 1999). Also other mod-
els, not based on economic theory, use statistical
techniques to quantify the relationships between land
use and driving forces (Veldkamp and Fresco, 1996;
Turner et al., 1996; Mertens and Lambin, 1997; Wear
and Bolstad, 1998; Mertens and Lambin, 2000;
Pijanowski et al., 2000; Pontius and Schneider, 2001;
Pontius et al., 2001; Serneels and Lambin, 2001 and
many more). Most of these approaches describe his-
toric land use conversions as a function of the changes
in driving forces and location characteristics. This
approach often results in a relatively low degree of
explanation due to the relative short time-period of
analysis, variability over this time period and a rela-
tively small sample size (Hoshino, 1996; Veldkamp and
Fresco, 1997). Cross-sectional analysis of the actual
land use pattern, which reflects the outcome of a long
history of land use changes, results in more stable
explanations of the land use pattern (de Koning et al.,
1998; Hoshino, 2001). A drawback of the statistical
quantification is the induced uncertainty with respect
to the causality of the supposed relations.

A third method for quantifying the relations between
driving forces and land use change is the use of expert
knowledge. Especially in models that use cellular auto-
mata expert knowledge is often used. Cellular automata
models define the interaction between land use at a
certain location, the conditions at that location and the
land use types in the neighbourhood (Engelen et al.,
1995; Clarke and Gaydos, 1998; Wu, 1998; Hilferink
and Rietveld, 1999). The setting of the functions
underlying these cellular automata is hardly ever docu-
mented and largely based upon the developer’s knowl-
edge and some calibration.

The difficulties in quantified modelling of complex
systems has lead to the development of qualitative
modelling which avoids quantification when quantita-
tive information is not available. This method is exem-
plified by the Syndromes approach (Petschel-Held et al.,
1999). This is not a real land use change model, but the
approach is able to indicate to what extent a certain
‘syndrome’, which is closely related to land use change,
is active in an area. Directly relevant for land use change
are e.g. an urban sprawl syndrome and a green revolu-
tion syndrome. The approach is dynamic, the intensity
of occurrence of the different syndromes in time can be
forecasted. Although spatially explicit, the present ex-
tent is global with associated coarse resolution. Much
needs to be done before these techniques become useful
for regional land use change modelling.
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Spatial interaction and neighbourhood effects

Theory and rationale
Land use patterns nearly always exhibit spatial auto-
correlation. The explanation for this autocorrelation can
be found, for a large part, in the clustered distribution of
landscape features and gradients in environmental con-
ditions that are important determinants of the land use
pattern. Another reason for spatially autocorrelated
land use patterns are the spatial interactions between
land uses types itself: urban expansion is often situated
right next to the already existing urban area, as is the
case for business parks etc. Scale economies can provide
an explanation for such patterns. In agricultural land-
scapes adoption of particular farming technologies or
cultivation patterns might also exhibit observable spatial
effects. Other land use types might preferably be located
at some distance from each other, e.g. an airport and a
residential area, leading to negative spatial autocorre-
lation. The importance of such structural spatial
dependencies is increasingly recognised by geographers
and economists. Spatial statistical techniques are
developed to quantify spatial dependencies in econo-
metrics (Anselin, 1988; Bell and Bockstael, 2000).

Spatial autocorrelation in land use patterns is scale
dependent. At an aggregate level residential areas are
clustered, having a positive spatial autocorrelation.
However, Irwin and Geoghegan (2001) found that at the
scale of individual parcels in the Patuxent watershed
there was evidence of a negative spatial interaction
among developed parcels, implying that a developed
land parcel ‘repels’ neighbouring development due to
negative spatial externalities that are generated from
development, e.g., congestion effects. The presence of
such an effect implies that, ceteris paribus, a parcel’s
probability of development decreases as the amount of
existing neighbouring development increases. The exis-
tence of different causal processes at different scales
means that spatial interactions should again be studied
at multiple scales while relations found at a particular
scale can only be used at that scale.

Spatial interactions can also act over a larger dis-
tances: a change in land use in the upstream part of a
river might affect land use in the downstream part
through sedimentation of eroded materials leading to a
functional connectivity between the two areas. Another
example of spatial connectivity is the migration of
companies from one part of the country to another part
when all available land area is occupied at the first
location. This type of connectivity is a result of a net-
work interaction. We can distinguish three types of
networks (Dupuy, 1991):
• Physical networks. These networks (roads, ecological
corridors, communication lines, etc.) form the spatial
conditions for flows of people, animals, goods, energy,
water etc. Flows are intricately associated with func-
tions, which may be interpreted as static forms of land
use e.g. places for work, recreation, habitation by
people, flora or fauna.

• Settlement networks. These networks result from the
specific demands economic, social and ecological land
use functions exert on their spatial positioning with
respect to the above-mentioned physical networks.

• Interaction networks. Companies, households, plant-
and animal species all maintain relations with func-
tions on other locations. These functional relations
are influenced by the physical networks and associ-
ated land use patterns.

Analysis of these networks is essential to understand the
spatial structure of land use. Globalisation of the
economy will cause these networks to have a large
spatial extent, leading to connectivity in land use
between continents.

Model implementation
Cellular automata are a common method to take spatial
interactions into account. They have been used in studies
of urban development (White et al., 1997; Clarke and
Gaydos, 1998;Wu, 1999; Li andYeh, 2000) but have now
also been implemented in land use models that are able to
simulate multiple land use types (White and Engelen,
2000). Cellular automata calculate the state of a pixel
based on its initial state, the conditions in the surrounding
pixels (Figure 2), and a set of transition rules. Although
very simple, they can generate a very rich behaviour
(Wolfram, 1986).

The Urban Growth Model (Clarke and Gaydos,
1998), a classical cellular automata model for urban
expansion was combined with so-called ‘deltatrons’ that
enforce even more spatial interaction than achieved with
cellular automata alone in order to achieve the desired
degree of spatial and temporal autocorrelation (Candau,
2000).

Neighbourhood interactions are now also increasingly
implemented in econometric models of land use change.
Although this implementation can be done through ad-
vanced measures of autocorrelation (Bell and Bockstael,
1988;Walker et al., 2000; Brown et al., 2002), more often
simple measures of neighbourhood composition, e.g. the
area of the same land use type in the neighbourhood, are
included as explanatory factors in regression models
explaining land use change (Geoghegan et al., 1997;
Nelson and Hellerstein, 1997; Munroe et al., 2001).

A different method for implementing spatial inter-
action, especially interaction over larger distances, is the
use of network analysis. In many models driving forces
have been included that indicate travel times or dis-
tances to markets, ports and other facilities that are
important to land use. Especially models that are based
on economic theory take the travel costs to a market
into account (Jones, 1983). Most often simple distance
measures are used. However, it is also possible to use
sophisticated techniques to calculate travel times/costs
and use the results to explain the land use structure. This
type of calculations are often included in combined ur-
ban-transportation models (Miller et al., 1999).

Spatial interactions can also be generated more
indirectly through the hierarchical structure of the
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model. Multi-scale models like CLUE (Veldkamp and
Fresco, 1996) and Environment Explorer (White and
Engelen, 2000) can generate spatial interactions through
the feedback over a higher scale. If a certain, regional,
demand cannot be met at the local level (due to a
location condition or policy, e.g. nature reserve), it will
feedback to the regional level and allocation to another
location will proceed. This type of modelling can indi-
cate the trade-off of a measure at a certain location for
the surrounding area.

Temporal dynamics: trajectories of change

Theory and rationale
The previous sections all dealt with spatial features of
land use change. Much of the issues addressed are also
relevant for the temporal dimension of land use change.
Changes are often non-linear and thresholds play an
important role. Non-linear behaviour asks for dynamic
modelling with relatively short time steps. Only then
land use change analysis can take into account the path-
dependency of system evolution, the possibility of mul-
tiple stable states, and multiple trajectories. Land use
change cannot be simply explained as the equilibrium
result of the present set of driving forces. In other words,
land use change may be dependent on initial conditions,
and small, essentially random events may lead to very
different outcomes, making prediction problematic.
Exemplary is the effect of transportation infrastructure
on the pattern of development. Road expansion and
improvement not only lead to more development but
may also lead to a different pattern through a reorga-
nisation of the market structure, which then feeds back
to further infrastructure development. Thus, certain
trajectories of land use change may be the result of ‘‘lock
in’’ that comes from systems that exhibit autocatalytic
behaviour.

Connected to the temporal dimension of models is
the issue of validation. Validation of land use change
models is most often based on the comparison of model
results for a historic period with the actual changes in
land use as they have occurred. Such a validation makes
it necessary to have land use data for another year than
the data used in model parameterisation. The time
period between the 2 years for which data are available
should be sufficient to actually compare the observed

and simulated dynamics. Ideally this time period should
be as long as the period for which future scenario sim-
ulations are made. Such data are often difficult to obtain
and even more often data from different time periods are
difficult to compare due to differences in the classifica-
tion scheme of land use maps or the resolution of remote
sensing data. Methods for validation of model perfor-
mance should make a clear distinction in the model
performance concerning the quantity of change and the
quality of the spatial allocation of the land use changes.
Appropriate methods for validation of land use change
models are described by Pontius (2000), Costanza (1989)
and by Pontius and Schneider (2001).

Implementation in models
In a number of models temporal dynamics are taken
into account using initial land use as a criterion for the
allowed changes. Cellular automata do this explicitly in
the decision rules that determine the conversion proba-
bility. In the CLUE-S model (Verburg et al., 2001) a
specific land use conversion elasticity is given to each
land use type. This elasticity will cause some land use
types to be more reluctant to change (e.g. plantations of
permanent crops) whereas others easily shift location
(e.g. shifting cultivation). In the SLEUTH urban growth
model (Candau, 2000) even more explicit functions to
enforce temporal autocorrelation are implemented that
also take the ‘age’ of a new urban development centre
into account. The economic land allocation model of the
Patuxent Landscape Model (Irwin and Geoghegan,
2001) also explicitly considers the temporal dimension.
The land use conversion decision is posed as an optimal
timing decision in which the landowner seeks to maxi-
mise expected profits by choosing the optimal time, in
which the present discounted value of expected returns
from converting the parcel to residential use are maxi-
mized. These latter two model implementations of
temporal dynamics already take account of a longer
time span than most models, which only account for the
initial state. However, most models are currently unable
to account for land use change as influenced by land use
histories that extent over longer time scales. For a
proper description of certain land use types, e.g. long
fallow systems, or feedback processes such as nutrient
depletion upon prolonged use of agricultural land,
incorporation of land use histories could make an
important improvement (Priess and Koning, 2001).

The combination of temporal and spatial dynamics
often causes a complex, non-linear behaviour. However,
a large group of models does not account at all for
temporal dynamics. These models are simply based on
an extrapolation of the trend in land use change through
the use of a regression on this change (Mertens and
Lambin, 2000; Pijanowski et al., 2000; Schneider and
Pontius, 2001; Serneels and Lambin, 2001; Geoghegan
et al., 2001). This type of models are therefore not
suitable for scenario analysis, as they are only valid
within the range of the land use changes on which they
are based. The validity of the relations is also violated

Figure 2. Alternative neighbourhoods used in cellular automata
models.
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upon a change in competitive conditions between the
land use types, e.g. caused by a change in demand. This
critique does not apply to all models based on statistical
quantification. When these models are based on the
analysis of the structure (pattern) of land use instead of
the change in land use and are combined with dynamic
modelling of competition between land use types, they
have a much wider range of applications.

Land use change decisions are made within different
time scales, some decisions are based on short term
dynamics (such as daily weather fluctuations), others are
only based on long-term dynamics. Most land use
models use annual time steps in the calculations. This
means that short-term dynamics are often ignored or,
when they can have an additive effect, are aggregated to
yearly changes. However, this aggregation can hamper
the linkage with the actual decision making taking at
shorter time scales. The need for multi-scale temporal
models was acknowledged in transportation modelling,
where short-term decisions depend on the daily activ-
ity schedules and unexpected events (Arentze and
Timmermans, 2000; Arentze et al., 2001). The link be-
tween this type of transportation models and land use is
straightforward. If changes in the daily activity schedule
are required on a regular basis individuals will need to
adjust their activity agenda or the factors affecting the
agenda, for example by relocation. Such a decision is a
typical long-term decision, evolving from regular chan-
ges in short-term decisions.

A quick scan through the land use modelling litera-
ture mentioned in this paper reveals that only a rela-
tively small number of all land use change models have
been validated on the basis of temporal data, e.g. Kok
et al. (2001), Schneider and Pontius (2001), Verburg
et al. (1999b). Many models have not been validated at
all.

Level of integration

Theory and rationale
Land use systems are groups of interacting, interde-
pendent parts linked together by exchanges of energy,
matter, and information. Land use systems are therefore

characterised by strong (usually non-linear) interactions
between the parts, complex feedback loops that make it
difficult to distinguish cause from effect, and significant
time and space lags, discontinuities, thresholds, and
limits (Costanza and Wainger, 1993). This complexity
makes the integration of the different sub-systems one of
the most important issues in land use modelling. Gen-
erally speaking, two approaches for integration can be
distinguished that differ in the degree of integration. The
first approach involves a rather loose coupling of sub-
systems that are separately analysed and modelled. To
allow the dissection of system components, it must be
assumed that interactions and feedbacks between system
elements are negligible or the feedbacks must be clearly
defined and information between the sub-systems must
be achieved through the exchange of input and output
variables between the sub-system models (Figure 3). The
second approach takes a more holistic view. Instead of
focussing all attention on the description of the sub-
systems explicit attention is given to the interactions
between the subsystems. In this approach more variables
are endogenous to the system and are a function of the
interactions between the system components. The ap-
proach chosen is very much dependent on the time-scale
(endogeneity assumptions) and the purpose for which
the model is built. Generally speaking, integration has
only an added value as compared with disciplinary re-
search when feedbacks and interactions between the
sub-systems are explicitly addressed. An appropriate
balance should be found, as the number of interactions
that can be distinguished within the land use system is
very large and taking all of those into account could lead
to models that are too complex to be operational.

Model implementation
The group of models that are commonly referred to as
integrated assessment models are models that attempt to
portray the social, economic, environmental and insti-
tutional dimensions of a problem (Rotmans and van
Asselt, 2001). In practice, most integrated assessment
models are directed to the modelling of climate change
and its policy dimensions (review by Schneider (1997).
Some integrated assessment models, e.g. the IMAGE2

Land use (t=i)

        Land use change model

 change = f(driving factors)

Land use (t=i+1)

Transportation
model

Erosion
model

Demographic
model

Groundwater
model

feedback

input data

driving factor

Figure 3. Interaction between the land use change model and models describing sub-systems.
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model (Alcamo et al., 1998) contain land use modules,
but these are often much less elaborated than models
that are specifically developed for land use studies. For
integrated assessment models the same conclusions hold
as for land use models: many large models consist of
linked subsystems that are not fully integrated. This
means that these models are complicated but not com-
plex, as a result of which their dynamic behaviour is
almost linear and does not adequately reflect real world
dynamics (Rotmans and van Asselt, 2001).

An example of a fully integrated model is the IIASA-
LUC model (Fischer and Sun, 2001). Although this
model incorporates many sub-systems, interactions and
feedbacks it has become complex to operate and, above-
all, difficult to parameterise due to the high data
requirements that are difficult to collect for most coun-
tries (see Briassoulis (2001) for a discussion of data
needs). Another disadvantage of highly complex, inte-
grated models is that the degree and type of integration
often appears to be subjective based on the modellers
disciplinary background. As a fully integrated approach,
qualitative modelling (Petschel-Held et al., 1999) allows
a focus on the system as a whole, however, also this
approach is completely based on the knowledge of the
developer about the existence and importance of the
feedbacks important to the studied system, so it is likely
to be biased and incomplete.

An integrated approach that models the behaviour of
the different subsystems individually but includes
numerous connections between these submodels is the
Patuxent Landscape Model (Geoghegan et al., 1997;
Voinov et al., 1999) that is designed to simulate funda-
mental ecological processes on the watershed scale, in
interaction with a component that predicts the land use
patterns. Land use change is dealt with in the economic
module (Bockstael, 1996; Irwin and Geoghegan, 2001)
whereas all hydrological and ecological processes in the
watershed are simulated in the ecological module. The
ecological module integrates all processes involved
based on the General Ecosystem Model (Fitz et al.,
1996). The coupling between the economic module and
the ecological module is less elaborated. Output of the
economic module, land use change patterns, is used as
input in the ecological module whereas the possibility
exists that output of the ecological module, e.g. water
table depths, habitat health etc., are used as inputs of the
economic module, allowing for feedbacks within the
system. Also in other integrated land use-ecosystem
models, the ecological sub-models tend to be far more
integrated than the associated land use models
(McClean et al., 1995).

An important finding in the literature of urban sys-
tems is the description of the behaviour of actors such
that the transportation and land use subsystems are
interdependent. The way activities are organised over
space has a lot to do with the level of transportation
demand. Conversely, supply in transportation infra-
structure and services affects how activities are organ-
ised in space. The circular nature of the impacts between

transportation and land use argues for the integration of
land use and transportation analysis. In spite of the need
for such an integration, most planners still use separate
models for transportation and land use (Kanaroglou
and Scott, 2001). The Integrated Transportation and
Land Use Package (ITLUP) is credited for first imple-
menting a link between an urban land use model and a
transportation model (Putman, 1983). More models
followed and are summarised by Kanaroglou and Scott
(2001). These are fruitful integrations but still focussed
on the urban system and its two main components:
employment and transportation. Although integration
between these systems can reach a fair degree of com-
plexity (e.g. Fan et al. (2000)), integration with location
characteristics is often limited to some site constraints
(available land area in a zone) and interactions with the
rural hinterland are not addressed. This is surprising as
urbanisation is among the most important drivers of
change in rural areas. Growing urban agglomerations
cause multiple impacts on land use and social structures
in the peri-urban areas and their hinterlands. These re-
late to the provision of non-farm job opportunities,
shifts to higher-valued farm commodities (such as veg-
etables, fruits, or livestock) to meet the demands of ur-
ban consumers, and the provision of environmental
services and landscape amenities. They also relate to
rapid and often chaotic changes in land use along the
urban peripheries, and place heavy demands on the
ecological system in terms of resource extraction, dis-
posal of waste, and discharge of pollutants. Such alter-
ations of the environment do not come without
consequences for land use and land productivity. Re-
gional land use/land cover change models must devise
suitable mechanisms for recognising the distinction be-
tween urban and rural sectors and for representing the
opportunities and tensions that derive from their inter-
action. The increasing urbanisation of the world popu-
lation has triggered major qualitative and quantitative
changes in the pressures on land use and land cover that
must be modelled through a more complete represen-
tation of the relevant processes (Grimm et al., 2000).

Discussion and conclusions

The discussion of the theoretical and practical aspects of
land use change modelling has shown that a wide variety
of approaches and techniques exists, rooted in a multi-
tude of disciplinary backgrounds, to model land use
change. A first assessment already makes clear that
different modelling groups have focussed on different
concepts to elaborate upon and that a further integra-
tion of the different approaches and techniques will
enable progress. At the same time the discussion also
indicates a number of issues where we still lack enough
understanding to judge which approach will most effi-
ciently improve land use modelling. This leads to a list of
priorities that need to be given specific attention in a
new generation of land use models:
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Better address the multi-scale characteristics of land use
systems

The rising awareness of scale dependencies and upscal-
ing problems has provided land use modellers with the
challenge to find approaches to deal with multiple scales.
It is, however, still unclear to what extent scale depen-
dencies in driving forces are really important. Pre-
liminary studies provide different conclusions on the
magnitude of the effect of scale on the relations with
driving forces (Veldkamp and Fresco, 1997; Kok and
Veldkamp, 2001; Walsh et al., 2001). If scale-effects are
small, it is possible to simply extrapolate the behaviour
of individuals to larger groups of people, which would
render micro-economic models (given their behavioural
assumptions) valid for applications at the regional level.
Multi-agent models might help us to explore scale
dependencies in more detail by linking the behaviour of
individuals to the behaviour of groups. These modelling
techniques have only recently found their application in
land use modelling, but have a lot of potential to unravel
some of the structural complexity of the system.

Another problem in land use modelling is the quan-
tification of the interactions of processes operating at
different scales. How important are bottom-up processes
as compared to top–down processes? To what extent do
regional dynamics impact on local conditions? Few
methodologies are available to study this type of scalar
dynamics. Multi-level statistics provide a first method to
fill this gap, but it is certain that more methodological
developments are needed.

Development of new techniques to assess and quantify
neighbourhood effects

Cellular automata models are very common in land use
studies, especially when focussed on urban development.
The theoretical basis of the quantification of the neigh-
bourhood functions for the cellular automata is however
poor. Quantification of this type of relations is now
mostly based upon expert knowledge. It is recom-
mended that a more sophisticated and reproducible way
is developed to define these neighbourhood effects. A
few recent publications address this issue and provide
techniques to empirically quantify cellular automata
models (Sui and Zeng, 2001; Li and Yeh, 2002; Verburg
et al., 2004). At the same time a balance must be
achieved between neighbourhood effects as a conse-
quence of direct interactions between neighbouring land
uses and neighbourhood effects caused by spatial auto-
correlation in the driving forces. If too much weight is
attributed to the interaction between land use types
themselves the modeller takes the risk to end up with a
model that lacks causality.

Explicit attention for temporal dynamics

The geographical disciplines have given considerable
attention to the spatial dynamics of land use. The

temporal aspects, especially the interaction between
spatial and temporal dimensions, have been given much
less attention. Also the influence of non-linear pathways
of change, feedbacks and time-lags deserve considerable
attention in future studies. Availability of data with the
necessary temporal and spatial resolution will be the
most important constraint for such research. Connected
to this issue is the validation of models: how good are
the models that we produce for projections into the fu-
ture. Validation is possible on historic data and should
be standard to any model. The lack of validation of
most current land use models makes it impossible to
properly assess the performance of these models. Vali-
dation would enable to inform policy makers, and other
users of model results, on the uncertainties in the model
outcomes and help the modeller to assess the suitability
of the model for a particular situation and provide ideas
to improve the model.

Further thematic and methodological integration

Although all land use models integrate different disci-
plines by definition, they are often still too much based
on the concepts and methods of a certain discipline.
Three aspects of integration have been given very lim-
ited attention:
• Methodological integration: techniques and methods
developed in very different disciplines might help to
better develop simulation algorithms. Multi-level
statistics, originating from educational research have
already proven to be useful in the analysis of the
hierarchical structure of land use. Hydraulic models
might help to understand traffic congestion and eco-
logical models can give hints of dealing with the
hierarchical organisation of land use (Dale and
Pearson, 1999).
This type of integration requires land use researchers
to move beyond their disciplinary traditions and
loosen the theoretical paradigms set by these disci-
plines. A couple of research projects in land use
analysis has already shown that such approaches can
result in innovative results, e.g. recent attempts to
link social science research with geographical data
(Geoghegan et al., 1998; Walsh et al., 1999; Mertens
et al., 2000; Walker et al., 2000; Walsh and Crews-
Meyer, 2002). Linking socio-economic and geo-
graphical data is a means to provide information on
the context that shapes social phenomena.

• Assessment of the effects of land use change and their
feedback on land use, e.g. soil degradation, water re-
sources and infrastructure development.

• Urban/rural interactions: presently few models
explicitly address the interaction between urban and
rural areas. Large impacts are to be expected of these
interactions both in developed countries through the
emergence of multi-functional land uses in the rural
hinterlands of cities, and in developing countries
where unequal development between cities and rural
areas and food security are important issues.
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The large volume of recent papers referred to in this
study, the multitude of new models and the growing
group of researchers gathered in the Land Use and Land
Cover Change (LUCC; Lambin et al., 2001) research
community indicates that large investments are being
made to improve land use change models. This paper
has shown that for such research a large variety of
concepts, approaches and techniques is already avail-
able: combining the strength of these concepts, ap-
proaches and techniques instead of elaborating on the
approach belonging to the modeller’s own discipline
alone will help to built a new generation of land use
models. Such interdisciplinary models will be based on
bundling of strengths of the multi-disciplinary land use
research community and help to better understand these
complex systems and to better communicate with the
stakeholders of land use change.
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Blöschl G. and Sivapalan M., 1995: Scale issues in hydrological
modelling: a review. Hydrological Processes 9: 251–290.

Bockstael N.E. 1996: Modeling economics and ecology: the impor-
tance of a spatial perspective. American Journal of Agricultural
Economics 78: 1168–1180.

Bockstael N.E. and Irwin E.G. 2000: Economics and the Land Use-
Environment Link. In: The International Yearbook of Environmental
and Resource Economics 1999/2000. (Folmer H. and Tietenberg T.,
(eds)), Edward Elgar Publishing.

Bousquet F., Bakam I., Proton H. and Le Page C., 1998: Cormas:
common-pool resources and multiagent systems. Lecture Notes in
Artificial Intelligence 1416: 826–837.

Briassoulis H., 2000: Analysis of land use change: theoretical and
modeling approaches. In: Loveridge S. (ed.), The Web Book of
Regional Science West Virginia University, Morgantown.

Briassoulis H., 2001: Policy-oriented Integrated analysis of land-use
change: an analysis of data needs. Environmental Management
27(1): 1–11.

Brown D.G., Goovaerts P., Burnicki A. and Li M.Y., 2002: Stochastic
simulation of land-cover change using geostatistics and generalized
additive models. Photogrammetric Engineering and Remote Sensing,
68(10): 1051–1061.

Bura S., Guerin-Pace F., Mathian H., Pumain D. and Sanders L.,
1996: Multiagent systems and the dynamics of a settlement system.
Geographical Analysis 28: 161–178.

Candau J., 2000: Calibrating a cellular automaton model of urban
growth in a timely manner. In: Parks B.O., Clarke K.M. and Crane
M.P. (eds.) Proceedings of the 4th International Conference on
Integrating Geographic Information Systems and Environmental
Modeling: Problems, Prospects, and Needs for Research; 2000: Sep
2–8, University of Colorado, Boulder.

Chomitz K.M. and Gray D.A., 1996: Roads, land use, and defores-
tation: a spatial model applied to belize. The World Bank Economic
Review 10: 487–512.

Clarke K.C. and Gaydos L.J., 1998: Loose-coupling a cellular
automaton model and GIS: long-term urban growth prediction
for San Fransisco and Washington/Baltimore. International Journal
of Geographical Information Science 12: 699–714.

Coleman J.S., 1990: Foundations of Social Theory. The Belknap Press
of Harvard University Press, Cambridge.

Conte R., Hegselmann R., and Terna P., 1997: Simulating Social
Phenomena, Springer, Berlin etc.

Costanza R., 1989. Model goodness of fit: a multiple resolution
procedure. Ecological Modelling 47: 199–215.

Costanza R. and Ruth M., 1998: Using dynamic modeling to scope
environmental problems and build consensus. Environmental Man-
agement 22: 183–195.

Costanza R. and Wainger L.A., 1993: Modeling complex ecological
economic systems. Bioscience 43: 545–556.

Cubert R.M., Goktekin T. and Fishwick P.A., 1997: MOOSE: archi-
tecture of an object-oriented multimodeling simulation system. In:
Proceedings of Enabling Technology for Simulation Science Orlando
Society of Photo-optical Instrumentation Engineers, Orlando.

Dale V.H. and Pearson S.M., 1999: Modeling the driving factors and
ecological consequences of deforestation in the Brazilian Amazon.
In: Mladenoff D.J. and Baker W.L., (eds.), Spatial Modeling of
Forest Landscape Change: Approaches and Applications Cambridge
University Press, Cambridge.

de Koning G.H.J., Veldkamp A. and Fresco L.O., 1998: Land use in
Ecuador: a statistical analysis at different aggregation levels.
Agriculture, Ecosystems and Environment 70: 321–247.

DIAS, 1995: The Dynamic Information Architecture System: a High
Level Architecture for Modeling and Simulation. Advanced Com-
puter Applications Center, Argonne National Laboratory http://
www.dis.anl.gov/DEEM/DIAS/diaswp.html.

Dovers S.R., 1995: A framework for scaling and raming policy
problems in sustainability. Ecological Economics 12: 93–106.

Dupuy G. 1991: L’urbanisme des reseaux: theories et methodes,
Armand Colin, Paris.

Engelen G. White R. Uljee I. and Drazan P., 1995: Using cellular
automata for integrated modelling of socio-environmental system.
Environmental Monitoring and Assessment 34: 203–214.

Fan W., Treyz F. and Treyz G., 2000: An evolutionary new economic
geography model. Journal of Regional Science 40: 671–695.

321



Fischer G. and Sun L.X.. 2001: Model based analysis of future land-
use development in China. Agriculture, Ecosystems and Environment
85: 163–176.

Fitz H.C., DeBellevue E., Costanza R., Boumans R., Maxwell T.,
Wainger L.A. and Sklar F., 1996: Development of a general
ecosystem model for a range of scales and ecosystems. Ecological
Modelling 88: 263–295.

Gardner R.H., 1998: Pattern, process, and the analysis of spatial
scales. In: Peterson D.L. and Parker V.T., (eds), Ecological Scale:
Theory and Applications pp. 17–34. Columbia University Press, New
York.

Geist H.J., Lambin E.F., Vogel C., Sharifa M., Turner II B.L.,
Lansigan F.P., Reid R., Veldkamp A., Leemans R., McConnel W.
and Serneels S., 2001: LUCC’s contribution for future IGBP
research: a position paper of the IGBP-IHDP LUCC (Land-Use
and Land-Cover Change) Project. For use at the Scoping Team
Meeting in Mainz, Germany, 26–27 October 2001, and in Fort
Collins, USA, 21–23 January 2002.

Geoghegan J., Pritchard, Jr.L., Ogneva-Himmelberger Y., Chowdhury
R.R., Sanderson S. and Turner II B.L., 1998: ‘Socializing the Pixel’
and ‘Pixelizing the Social’ in land-use and land-cover change. In:
Liverman D. Moran E.F., Rindfuss R.R., and Stern P.C., (eds.)
People and Pixels: Linking Remote Sensing and Social Science,
National Academy Press, Washington.

Geoghegan J., Villar S.C., Klepeis P., Mendoza P.M., Ogneva-
Himmelberger Y., Chowdhury R.R., Turner II B.L. and Vance
C., 2001: Modeling Tropical Deforestation in the Southern Yucatán
Peninsular Region: Comparing Survey and Satellite Data. Agricul-
ture, Ecosystems and Environment 85: 25–46.

Geoghegan J., Wainger L.A. and Bockstael N.E., 1997: Spatial
landscape indices in a hedonic framework: an ecological economics
analysis using GIS. Ecological Economics 23: 251–264.

Gibson C.C., Ostrom E. and Anh T.K., 2000: The concept of scale and
the human dimensions of global change: a survey. Ecological
Economics 32: 217–239.

Goldstein H., 1995:Multilevel Statistical Models, New York, Halstaed.
Goodwin B.J. and Fahrig L., 1998: Spatial scaling and animal

population dynamics. In: Peterson D.L. and Parker V.T., (eds.),
Ecological Scale: Theory and Applications pp. 193–206. Columbia
University Press, New York.

Grimm N.B., Grove J.M., Pickett T.A. and Redman C.L., 2000:
Integrated Approaches to Long-Term Studies of Urban Ecological
Systems. BioScience 50(7), 571–584.

Hiebler D., Strom M. and Daniel T.C., 1994: The SWARM Simula-
tion System and Individual-based Modeling. In: Decision Support
2001: 17th Annual Geographic Information Seminar and Resource
Technology ‘94 Symposium, Toronto pp. 474–494.

Hijmans R.J. and Van Ittersum M.K., 1996: Aggregation of spatial
units in linear programming models to explore land use options.
Netherlands Journal of Agricultural Science 44, 145–162.

Hilferink M. and Rietveld P. 1999: LAND USE SCANNER: An
integrated GIS based model for long term projections of land use in
urban and rural areas. Journal of Geographical Systems 1: 155–177.

Hoshino S., 1996: Statistical analysis of land-use change and driving
forces in the Kansai District, Japan. WP-96–120. Laxenburg,
IIASA. IIASA working papers.

Hoshino S., 2001: Multilevel modeling on farmland distribution in
Japan. Land Use Policy 18: 75–90.

Irwin E. and Geoghegan J., 2001: Theory, data, methods: developing
spatially-explicit economic models of land use change. Agriculture,
Ecosystems and Environment 85: 7–24.

Jansen H. and Stoorvogel J.J., 1998: Quantification of aggregation bias
in regional agricultural land use models: application to Guacimo
County, Costa Rica. Agricultural Systems 58: 417–439.

Janssen M.A. and Jager W., 2000: The human actor in ecological-
economic models: Preface. Ecological Economics 35: 307–310.

Jones D.W., 1983: Location, agricultural risk, and farm income
diversification. Geographical Analysis 15: 231–246.

Jones D.W. and O’Neill R.V., 1992: Endogenous environmental
degradation and land conservation: agricultural land use in a
region. Ecological Economics 6: 79–101.

Kaimowitz D. and Angelsen A., 1998: Economic Models of Tropical
Deforestation – A Review., Bogor, Center for International
Forestry Research.

Kanaroglou P. and Scott D., 2001: Integrated urban transportation
and land-use models for policy analysis. In: Dijst M., Schenkel W.,
and Thomas I., (eds.), Governing Cities on the Move Avebury,
Aldershot UK.

King A.W., Johnson A.R., O’Neill R.V. and DeAngelis D.L., 1989:
Using ecosystem models to predict regional CO2 exchange between
the atmosphere and the terrestrial biosphere. Global Biogeochemical
Cycles 3: 337–361.

Kok K., Farrow A., Veldkamp A. and Verburg P.H., 2001: A method
and application of multi-scale validation in spatial land use models.
Agriculture, Ecosystems and Environment 85: 223–238.

Kok K. and Veldkamp A., 2001: Evaluating impact of spatial scales on
land use pattern analysis in Central America. Agriculture, Ecosys-
tems and Environment 85: 205–221.

Lambin E.F., 1997: Modelling and monitoring land-cover change
processes in tropical regions. Progress in Physical Geography 21:
375–393.

Lambin E.F., Baulies X., Bockstael N.E., Fischer G., Krug T.,
Leemans R., Moran E.F., Rindfuss R.R., Sato Y., Skole D., Turner
II B.L. and Vogel C.Land-Use and Land-Cover Change (LUCC),
Implementation Strategy. IGBP Report 48, IHDP Report 10., 2000.
Stockholm, Bonn, IGBP, IHDP.

Lambin E.F., Rounsevell M.D.A. and Geist H.J., 2000a. Are
agricultural land-use models able to predict changes in land-use
intensity? Agriculture, Ecosystems and Environment 82: 321–331.

Lambin E.F., Turner II B.L., Geist H.J., Agbola S.B., Angelsen A.,
Bruce J.W., Coomes O., Dirzo R., Fischer G., Folke C., George
P.S., Homewood K., Imbernon J., Leemans R., Li X.B., Moran
E.F., Mortimore M., Ramakrishnan P.S., Richards J.F., Skanes H.,
Stone G.D., Svedin U., Veldkamp A., Vogel C. and Xu J.C., 2001:
The Causes of Land-Use and Land-Cover Change: Moving Beyond
the Myths. Global Environmental Change 11(4), 261–269.

Landis J.D., 1995: Imaging land use futures. Journal of the American
Planning Association 61: 438–458.

Levin S.A., 1998: Ecosystems and the Biosphere as Complex Adaptive
Systems. Ecosystems 1: 431–436.

Li X. and Yeh A.G., 2000: Modelling sustainable urban development
by the integration of constrained cellular automata and GIS.
International Journal of Geographical Information Science 14: 131–
152.

Li X. and Yeh A.G., 2002: Neural-network-based cellular-automata
for simulating multiple land use changes using GIS. International
Journal of Geographic Information Science 16(4): 323–344.

Lutz R., 1997: HLA Object Model Development: A Process View,
Simulation Interoperability Workshop. Simulation INteroperability
Standards Organization, Orlando http://siso.sc.ist.ucf.edu/siw/
97spring/papers/010.pdf.

Manson S.M., 2000: Agent-based dynamic spatial simulation of land-
use/cover change in the Yucatán peninsula, Mexico. In: B.O. Clarke
K.M. and Crane M.P., (eds.), Proceedings of the 4th International
Conference on Integrating Geographic Information Systems and
Environmental Modeling: Problems, Prospects, and Needs for
Research; 2000: Sep 2–8; Boulder Parks, University of Colorado,
Boulder.

McClean C.J., Watson P.M., Wadsworth R.A., Blaiklock J. and
O’Callaghan J.R., 1995: Land Use Planning: a decision support
system. Journal of Environmental Planning and Management 1:
77–92.

McConnell W. and Moran E.F. Meeting in the Middle: The Challenge
of Meso-Level Integration., 2001: Indiana University, LUCC Focus
1 Office, Anthropological Center for Training and Research on
Global Environmental Change. LUCC Report Series 5.

Meentemeyer V., 1989: Geographical perspectives of space, time, and
scale. Landscape Ecology 3: 163–173.

Mertens B. and Lambin E.F., 1997: Spatial modelling of deforestation
in Southern Cameroon. Spatial disaggregation of diverse defores-
tation processes. Applied Geography 17: 143–162.

Mertens B. and Lambin E.F., 2000. Land-cover-change trajectories in
southern cameroon. Annals of the Association of American Geog-
raphers 90: 467–494.

Mertens B., Sunderlin W.D., Ndoye O. and Lambin E.F., 2000:
Impact of macroeconomic change on deforestation in south
cameroon: Integration of Household Survey and Remotely-Sensed
Data. World Development 28: 983–999.

322



Miller E.J., Kriger D.S. and Hunt J.D., 1999: TCRP Web Document 9:
Integrated Urban Models for Simulation of Transit and Land-Use
Policies: Final Report, University of Toronto Joint Program in
Transportation and DELCAN Corporation, Toronto.

Moran E.F., 2000: Progress in the last ten years in the study of land
use/cover change and the outlook for the next decade. In:
Diekmann A. Dietz T. Jaeger C.C. and Rosa E.A., (eds.) Studying
the Human Dimensions of Global Environmental Change, MIT Press,
Cambridge.

Munroe D., Southworth J. and Tucker C.M., 2001: The dynamics of
land-cover change in western honduras: Spatial Autocorrelation
and Temporal Variation. Presented at the American Agricultural
Economics Association Annual Meeting, Chicago, Il.

Nelson G.C. and Hellerstein D., 1997: Do roads cause deforestation?
Using satellite images in econometric analysis of land use. American
Journal of Agricultural Economics 79(12): 80–88.

O’Neill R.V., Johnson A.R. and King A.W., 1989: A hierarchical
framework for the analysis of scale. Landscape Ecology 3, 193–205.

O’Neill R.V. and King A.W., 1998: Homage to St. Michael; or, Why
Are Ther So Many Books on Scale? In: Peterson D.L. and Parker
V.T., (eds.), Ecological Scale: Theory and Applications pp. 3–16.
Columbia University Press, New York.

Pahari K. and Marai S., 1999: Modelling for prediction of global
deforestation based on the growth of human population. ISPRS
Journal of Photogrammetry & Remote Sensing 54: 317–324.

Petschel-Held G., Block A., Cassel-Gintz M., Kropp J., Ludeke
M.K.B., Moldenhauer O., Reusswig F. and Schellnhuber H.J.,
1999: Syndromes of global change; a qualitative modelling
approach to assist global environmental management. Environmen-
tal Modeling and Assessment 4: 295–314.

Pfaff A.S.P., 1999: What Drives Deforestation in the Brazilian
Amazon? Evidence from Satellite and Socioeconomic Data. Journal
of Environmental Economics and Management 37: 25–43.

Pijanowski B.C., Gage S.H., Long D.T. and Cooper W.C., 2000: A
land transformation model for the Saginaw Bay Watershed. In:
Sanderson J. and Harris L.D., (eds.), Landscape Ecology: A Top
Down Approach Lewis Publishing.

Polhill J.G., Gotts N.M. and Law A.N.R., 2001: Imitative versus
nonimitative strategies in a land-use simulation. Cybernetics and
Systems 32: 285–307.

Polsky C. and Easterling III W.E., 2001: Ricardian climate sensitiv-
ities: accounting for adaptation across scales. Agriculture, Ecosys-
tems and Environment 85: 133–144.

Pontius R.G., 2000: Quantification error versus location error in
comparison of categorical maps. Photogrammetric Engineering and
Remote Sensing 66: 1011–1016.

Pontius R.G., Cornell J.D. and Hall C.A.S., 2001: Modeling the
spatial pattern of land-use change with GEOMOD2: application
and validation for Costa Rica. Agriculture, Ecosystems and Envi-
ronment 85: 191–203.

Pontius R.G. and Schneider L.C., 2001: Land-use change model
validation by an ROC method for the Ipswich watershed, Massa-
chusetts, USA. Agriculture, Ecosystems and Environment 85: 239–
248.

Priess J. and Koning G.H.J., 2001: Assessment of interactions between
land use change and carbon and nutrient fluxes. Agriculture,
Ecosystems and Environment 85: 269–280.

Putman S.H., 1983: Integrated Urban Models: Policy Analysis of
Transportation and Land Use, Pion, London.

Rabin M., 1998: Psychology and Economics. Journal of Economic
Literature 36: 11–46.

Rastetter R.A., King A.W., Cosby B.J., Hornberger G.M., O’Neill
R.V. and Hobbie J.E., 1992: Aggregating fine-scale ecological
knowledge to model coarse-scale attributes of ecosystems. Ecolog-
ical Applications 2: 55–70.

Riebsame W.E. and Parton W.J., 1994: Integrated modeling of land
use and cover change. Bioscience 44: 350–357.

Rotmans J. and van Asselt M.B.A., 2001: Uncertainty management in
integrated assessment modeling: towards a pluralistic approach.
Envrionmental Monitoring and Assessment 69: 101–130.

Rouchier J., Bousquet F., Requier-Desjardins M. and Antona M.,
2001: A multi-agent model for describing transhumance in North
Cameroon: Comparison of different rationality to develop a
routine. Journal of Economic Dynamics & Control 25: 527–559.

Ruben R., Moll H. and Kuyvenhoven A., 1998: Integrating agricul-
tural research and policy analysis: Analytical framework and policy
applications for bio-economic modelling. Agricultural Systems 58:
331–349.

Sanders L., Pumain D., Mathian H., Guerin-Pace F. and Bura S.,
1997: SIMPOP: a multiagent system for the study of urbanism.
Envrionment and Planning B 24: 287–305.

Schneider L.C. and Pontius R.G., 2001: Modeling land-use change in
the Ipswich Watershed, Massachusetts, USA. Agriculture, Ecosys-
tems and Environment 85: 83–94.

Schneider S.H., 1997: Integrated assessment modeling of global
climate change: Transparent rational tool for policy making or
opaque screen hiding value-laden assumptions? Environmental
Modeling and Assessment 2: 229–249.

Schulze R., 2000: Transcending scales of space and time in impact
studies of climate and climate change on agrohydrological
responses. Agriculture, Ecosystems and Environment 82: 185–212.

Serneels S. and Lambin E.F., 2001: Proximate causes of land use
change in Narok district Kenya: a spatial statistical model.
Agriculture, Ecosystems and Environment 85: 65–81.

Sui D.Z. and Zeng H., 2001: Modeling the dynamcs of landscape
structure in Asia’s emerging desakota regions: a case study in
Shenzhen. Landscape and Urban Planning 53: 37–52.

Tesfatsion L., 2001: Introduction to the special issue on agent-based
computational economics. Journal of Economic Dynamics & Control
25: 281–293.

Turner II B.L., Ross R.H. and Skole D.L., 1993: Relating land use and
global land cover change. IGDP report no. 24; HDP report no.5.

Turner II B.L., Skole D.L., Sanderson S., Fischer G., Fresco L.O. and
Leemans R., 1995: Land-Use and Land-Cover Change - Science/
Research Plan. IGBP Report No. 35; HDP Report No. 7.
Stockholm and Geneva.

Turner M.G., Wear D.N. and Flamm R.O., 1996: Land Ownership
and Land-Cover Change in the Southern Appalachian Highlands
and the Olympic Peninsula. Ecological Applications 6: 1150–1172.

van der Veen A. and Rotmans J., 2001: Dutch perspectives on
‘‘Agents, Regions and Land Use Change’’. Environmental Modeling
and Assessment 6: 83–86.

Van Ittersum M.K., Rabbinge R. and Van Latesteijn H.C., 1998:
Exploratory land use studies and their role in strategic policy
making. Agricultural Systems 58: 309–330.

Vanclay J.K., 1998: FLORES: for exploring land use options in
forested landscapes. Agroforestry forum 9: 47–52.

Veldkamp A. and Fresco L.O., 1996: CLUE-CR: an integrated multi-
scale model to simulate land use change scenarios in Costa Rica.
Ecological Modelling 91: 231–248.

Veldkamp A. and Fresco L.O. 1997: Reconstructing land use drivers
and their spatial scale dependence for Costa Rica. Agricultural
Systems 55: 19–43.

Veldkamp A. and Lambin E.F., 2001: Editorial: Predicting land-use
change. Agriculture, Ecosystems and Environment 85: 1–6.

Verburg P.H. and Chen Y.Q., 2000: Multi-scale characterization of
land-use patterns in China. Ecosystems 3: 369–385.

Verburg P.H., Soepboer W., Limpiada R., Espaldon M.V.O. and
Sharifa M., 2002: Land use change modelling at the regional
scale: the CLUE-S model. Environmental Management 30(3): 391–
405.

Verburg P.H., Veldkamp A. and Bouma J. 1999b: Land use change
under conditions of high population pressure: the case of Java.
Global Environmental Change 9: 303–312.

Verburg P.H., Veldkamp A., de Koning G.H.J., Kok K. and Bouma
J., 1999a: A spatial explicit allocation procedure for modelling the
pattern of land use change based upon actual land use. Ecological
Modelling 116: 45–61.

Verburg, P.H., de Nijs, T.C.M., Ritsema van Eck, J., Visser, H. and de
Jong, K. 2004: A method to analyse neighbourhood characteristics
of land use patterns. Computers, Environment and Urban Systems
28(6): 667–690.

Voinov A., Costanza R., Wainger L.A., Boumans R., Villa F.,
Maxwell T. and Voinov H., 1999: Patuxent landscape model:
integrated ecological economic modeling of a watershed. Environ-
mental Modelling & Software 14: 473–491.

Waddell P., 2000: A behavioral simulation model for metropolitan
policy analysis and planning: residential location and housing

323



market components of UrbanSim. Environment and Planning B 27:
247–263.

Walker R., Moran E.F. and Anselin L., 2000: Deforestation and cattle
ranching in the brazilian amazon: External Capital and Household
Processes. World Development 28: 683–699.

Walsh S.J., Crawford T.W., Crews-Meyer K.A. and Welsh W.F., 2001:
A Multi scale Analysis of Land use Land cover change and NDVI
Variation in Nang Rong District, Northeast Thailand. Agriculture,
Ecosystems and Environment 85: 47–64.

Walsh S.J., Evans T.P., Welsh W.F., Entwisle B. and Rindfuss R.R.,
1999: Scale-Dependent Relationships between Population and
Environment in Northeastern Thailand. Photogrammetric Engineer-
ing & Remote Sensing 65: 97–105.

Walsh S.J. and Crews-Meyer K.A., (eds.) 2002: Linking People, Place,
and Policy. A GIScience Approach. Kluwer Academic Publishers,
Boston/Dordrecht/London.

Watson M.K., 1978: The scale problem in human geography.
Geografiska Annaler 60B: 36–47.

Wear D.N. and Bolstad P., 1998: Land-use changes in Southern
Appalachian Landscapes: spatial analysis and forecast evaluation.
Ecosystems 1: 575–594.

White R. and Engelen G., 2000: High-resolution integrated modelling
of the spatial dynamics of urban and regional systems. Computers,
Environment and Urban Systems 24: 383–400.

White R., Engelen G. and Uijee I., 1997: The use of constrained
cellular automata for high-resolution modelling of urban land-use
dynamics. Environment and Planning B 24: 323–343.

Wolfram S., 1986. Theory and Applications of Cellular Automata,
World Scientific, Singapore.

Wu F., 1998: Simulating urban encroachment on rural land with
fuzzy-logic-controlled cellular automata in a geographical infor-
mation system. Journal of Environmental Management 53: 293–
308.

Wu F., 1999: GIS-based simulation as an exploratory analysis for
space-time processes. Journal of Geographical Systems 1: 199–
218.

324


